+7 (495) 231-94-13
Москва, ул.Гарибальди, д.23 пав. 1п-14
с 10 до 21:00 Пн-Вс
 
Новости

31.12.2018 - с 10:00 до 19:00
01.01.2019 - выходной
02.01.2019 - с 11:00 до 21:00
06.01.2019 - с 10:00 до 19:00
07.01.2019 - с 11:00 до 21:00
08.01.2019 - с 10:00 до 21:00
далее по стандартному графику

В августе 2018 года Китай экспортировал 4314,4 тонны редкоземельных элементов...

Диск 50x30 мм
Диск 50x30 мм
Обычная цена
1 230pуб.
990pуб.
Скидка
20%
 

 
 
 
 
 

Электричество и магнетизм. Физика. Курс МИСиС.

скачать в формате Word

Цель обучения

  1. Электростатика.
  2. Постоянный электрический ток.
  3. Магнитное поле постоянного тока.
  4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны.

Лекции

  1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
  2. Основные уравнения электростатики в вакууме.
  3. Электростатическое поле в диэлектриках.
  4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
  5. Постоянный электрический ток.
  6. Основы классической теории электропроводности металлов.
  7. Электрический ток в различных средах.
  8. Магнитостатика.
  9. Контур с током в магнитном поле.
  10. Основные уравнения магнитостатики в вакууме.

Цель обучения

Научить современным методам физического исследования на основе знаний универсальных законов электромагнитного поля, законов постоянного тока, электромагнитных колебаний и волн. Сформировать навыки решения прикладных задач, умение выделять и моделировать конкретное физическое содержание в прикладных задачах будущей профессиональной деятельности. Сформировать навыки проведения физического эксперимента, использования современного физического оборудования и компьютерных методов обработки результатов.

Раздел 1. Электростатика.

1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
Предмет классической электродинамики и границы ее применимости. Два рода электрических зарядов, их дискретность. Кварки. Закон сохранения электрического заряда. Взаимодействие электрических зарядов. Закон Кулона. Системы единиц. Напряженность электрического поля. Линии напряженности. Принцип суперпозиции электрических полей.

1.2. Основные уравнения электростатики в вакууме.
Описание свойств векторных полей. Поток вектора напряженности электрического поля в вакууме (теорема Гаусса). Вычисление полей протяженных заряженных тел с помощью теоремы Гаусса. Работа сил электростатического поля. Циркуляция электростатического поля. Потенциал электростатического поля. Градиент потенциала. Эквипотенциальные линии и поверхности. Связь напряженности и потенциала. Диполь. Электрическое поле системы точечных зарядов на больших расстояниях. Основные уравнения электростатики в вакууме.

1.3. Электростатическое поле в диэлектриках.
Диполь во внешнем электростатическом поле. Энергия диполя во внешнем электростатическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Вектор поляризации. Поле внутри диэлектрика. Вектор электрического смещения. Диэлектрическая восприимчивость и диэлектрическая проницаемость вещества. Теорема Гаусса для электростатического поля в диэлектриках. Граничные условия на поверхности раздела двух диэлектриков. Сегнетоэлектрики и пироэлектрики.

1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
Идеальный проводник в электростатическом поле. Поверхностные заряды. Поле внутри проводника. Электростатическая защита. Граничные условия на поверхности раздела проводника с вакуумом, проводника с диэлектриком. Электроемкость уединенного проводника и взаимная емкость системы проводников. Конденсаторы. Емкость конденсатора. Энергия взаимодействия электрических зарядов. Энергия системы заряженных проводников. Энергия заряженного конденсатора. Плотность энергии электрического поля.

Раздел 2. Постоянный электрический ток.

2.1. Постоянный электрический ток.
Условия существования тока. Электродвижущая сила. Источники ЭДС. Закон Ома для участка цепи в интегральной и дифференциальной формах. Закон Ома для замкнутой цепи. Работа и мощность постоянного тока. Закон Джоуля - Ленца в интегральной и дифференциальной формах. Закон сохранения энергии для замкнутой электрической цепи. Разветвленные цепи. Правила Кирхгофа.

2.2. Основы классической теории электропроводности металлов.
Открытие электрона. Природа носителей тока в металлах. Основные положения классической электронной теории проводимости металлов Друде-Лоренца. Вывод законов Ома, Джоуля - Ленца и Видемана - Франца на основе классической теории электропроводности металлов. Электрическое сопротивление металлов. Затруднения классической теории. Открытие явления сверхпроводимости металлов. Открытие явления высокотемпературной сверхпроводимости диэлектриков (керамик).

2.3. Электрический ток в различных средах.
Электропроводность газов. Процессы ионизации и рекомбинации. Газовый разряд, основные виды газового разряда. Понятие о плазме. Природа носителей заряда в электролитах. Закон Ома для электролитов. Законы электролиза Фарадея. Применение электролиза в металлургии, других технологических процессах. Электрический ток в вакууме. Явление термоэлектронной эмиссии. Работа выхода электрона из металла. Закон Богуславского – Лэнгмюра. Формула Ричардсона. Электронные лампы.

Раздел 3. Магнитное поле постоянного тока.

3.1. Магнитное поле.
Взаимодействие элементов тока. Закон Ампера. Магнитное поле. Напряженность магнитного поля в вакууме. Магнитная индукция. Единицы измерения. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей. Магнитное поле кругового витка с током и прямолинейного отрезка проводника с током. Собственное магнитное поле движущегося заряда.

3.2. Контур с током в постоянном магнитном поле.
Магнитный момент контура с током. Момент сил, действующий на контур с током в магнитном поле. Энергия контура с током в магнитном поле. Работа перемещения проводника с током в постоянном магнитном поле.

3.3. Основные уравнения магнитостатики в вакууме.
Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. Соленоидальность магнитного поля. Представление о монополе Дирака. Теорема о циркуляции магнитного поля в вакууме. Напряженность магнитного поля внутри прямого длинного соленоида и тороида.

3.4. Магнитное поле в веществе.
Намагничивание вещества. Молекулярные токи Ампера. Вектор намагниченности. Вектор напряженности магнитного поля в веществе. Магнитная восприимчивость и магнитная проницаемость вещества. Граничные условия на поверхности раздела двух магнетиков.

3.5. Основы электронной теории магнетизма.
Магнитные моменты атомов и молекул. Орбитальный магнитный момент электрона. Теорема Лармора. Природа диа- и парамагнетизма. Элементы теории ферромагнетизма. Точка Кюри. Закон Кюри - Вейсса. Доменная структура. Техническая кривая намагничивания ферромагнетиков. Квантовая природа ферромагнетизма. Ферри- и антиферромагнетики. Эффект Мейснера.

3.6. Движение заряженных частиц в постоянных электрическом и магнитном полях.
Отклонение заряженных частиц электрическим и магнитным полями. Сила Лоренца. Движение заряженных частиц в однородном постоянном магнитном поле. Масс-спектро-граф. Ускорители заряженных частиц. Эффект Холла.

Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны.

4.1. Явление электромагнитной индукции.
Возникновение электродвижущей силы индукции в движущихся и неподвижных проводниках. Закон электромагнитной индукции Фарадея. Правило Ленца. Явление самоиндукции. Индуктивность. Пример расчета индуктивности соленоида. Переходные процессы в электрических цепях. Энергия магнитного поля. Плотность энергии.

4.2. Электромагнитные колебания.
Колебательный контур. Гармонические колебания в контуре. Формула Томсона. Свободные затухающие колебания. Декремент затухания и добротность колебательного контура. Вынужденные колебания. Резонанс токов и резонанс напряжений. Метод векторных диаграмм. Импеданс электрической цепи. Комплексное сопротивление.

4.3. Уравнения Максвелла.
Вихревое электрическое поле. Гипотеза Максвелла о токе смещения. Система уравнений Максвелла в интегральной и дифференциальной формах. Магнетизм как релятивистский эффект. Относительность разделения электромагнитного поля на электрическое и магнитное. Взаимопревращаемость переменных электрических и магнитных полей. Волновое уравнение. Плоская электромагнитная волна как решение уравнений Максвелла. Структура электромагнитной волны. Электромагнитные волны в прозрачной диэлектрической среде. Плотность потока энергии. Теорема Пойнтинга. Закон сохранения энергии для электромагнитного поля.

4.4. Общие свойства и характеристики волновых процессов.
Волны. Уравнение монохроматической волны. Плоские, цилиндрические и сферические, скалярные и векторные волны. Поляризация волн. Волновое уравнение. Общее решение волнового уравнения. Бегущие и стоячие волны. Волны в упругой среде. Энергетические соотношения. Вектор Умова-Пойнтинга. Эффект Доплера.

скачать в формате Word